Lie Point Symmetries for Reduced Ermakov Systems

نویسنده

  • J. Goedert
چکیده

Reduced Ermakov systems are defined as Ermakov systems restricted to the level surfaces of the Ermakov invariant. The condition for Lie point symmetries for reduced Ermakov systems is solved yielding four infinite families of systems. It is shown that SL(2, R) always is a group of point symmetries for the reduced Ermakov systems. The theory is applied to a model example and to the equations of motion of an ion under a generalized Paul trap. PACS numbers: 02.30.Hg; 02.90.+p; 03.20.+i

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Solutions for Fokker-Plank Equation of‎ ‎Special Stochastic Process via Lie Point Symmetries

‎In this paper Lie symmetry analysis is applied in order to find new solutions for Fokker Plank equation of Ornstein-Uhlenbeck process‎. ‎This analysis classifies the solutions format of the Fokker Plank equation by using the Lie algebra of the symmetries of our considered stochastic process‎.

متن کامل

Exact solutions for Fokker-Plank equation of geometric Brownian motion with Lie point symmetries

‎In this paper Lie symmetry analysis is applied to find new‎ solution for Fokker Plank equation of geometric Brownian motion‎. This analysis classifies the solution format of the Fokker Plank‎ ‎equation‎.

متن کامل

Polynomial and non-polynomial solutions set for wave equation with using Lie point symmetries

‎This paper obtains the exact solutions of the wave equation as a second-order partial differential equation (PDE)‎. ‎We are going to calculate polynomial and non-polynomial exact solutions by using Lie point symmetry‎. ‎We demonstrate the generation of such polynomial through the medium of the group theoretical properties of the equation‎. ‎A generalized procedure for polynomial solution is pr...

متن کامل

On the Lie Symmetries of a Class of Generalized Ermakov Systems

The symmetry analysis of Ermakov systems is extended to the generalized case where the frequency depends on the dynamical variables besides time. In this extended framework, a whole class of nonlinearly coupled oscillators are viewed as Hamiltonian Ermakov system and exactly solved in closed form.

متن کامل

Dynamical Symmetries and the Ermakov Invariant

Ermakov systems possessing Noether point symmetry are identified among the Ermakov systems that derive from a Lagrangian formalism and, the Ermakov invariant is shown to result from an associated symmetry of dynamical character. The Ermakov invariant and the associated Noether invariant, are sufficient to reduce these systems to quadratures. PACS number(s): 02.30.Hg, 02.90.+p, 03.20.+i

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008